Available online at www.sciencedirect.com -
Transportation

. . Research
ScienceDirect

P di
Transportation Research Procedia 25C (2017) 1290-1299 M

www.elsevier.com/locate/procedia

World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July 2016

Large-scale, high-fidelity dynamic traffic assignment: framework
and real-world case studies

Qi1 Yang ?, Ramachandran Balakrishna **, Daniel Morgan #, Howard Slavin #
“Caliper Corporation, 1172 Beacon Street, Suite 300, Newton, MA 02461, USA

Abstract

We present a highly detailed, microscopic Dynamic Traffic Assignment (DTA) framework with sufficient fidelity to address emer-
gent and future planning and operations applications. Congestion patterns are estimated at the lane level with explicit modeling of
complex signal timing algorithms and their impacts on queues and spillbacks. A Geographic Information System (GIS) ensures
the most accurate network representation. The flexible representation of travel demand at the resolution of individual vehicles fa-
cilitates the capturing of sufficient vehicle and driver classes, vehicle performance and driving behavior distributions, inter-vehicle
interactions, and temporally fine trajectories. Model outputs are saved at any desired granularity, and may be used to assess entire
distributions of performance metrics to support reliability studies. Applications of the framework include the study of connected
vehicles, Intelligent Transportation Systems (ITS), advanced tolling systems, and emissions modeling, and safety analysis. The
above features are implemented with unparalleled computational performance so that large-scale networks may be handled without
the need for accuracy-running time tradeoffs. We describe four real-world projects that clearly demonstrate the advantages of the
microscopic DTA in practice.
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1. Introduction

Motivated by the pressing need to address transportation planning and operations problems characterized by fluc-
tuating demand and supply phenomena, agencies are increasingly exploring Dynamic Traffic Assignment (DTA) as
a necessary tool in practice. These problems, such as signal plan optimization, dynamic tolling, high-occupancy ve-
hicle (HOV) lanes, high-occupancy toll (HOT) facilities, emissions monitoring and work zone scheduling, require a
detailed handling of driver behavior and network performance that is not afforded by traditional static traffic assign-
ment. Accurate rendering of the ground truth requires that individual drivers’ heterogeneous behavior responses are
captured reliably, and that the network’s response to travel demand decisions respects basic constraints such as those
imposed by the capacities of each roadway segment. DTA has demonstrated the potential to address these modeling
requirements for some time now, with various research efforts beginning to crystallize into practical guidelines (Chiu
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et al. (2011)). Various DTA tools such as DynaMIT (Ben-Akiva et al. (2010)), DYNASMART (Jayakrishnan et al.
(1994)) and Dynameq (Mahut and Florian (2010)) have been reported in practice. The reader is referred to Sundaram
et al. (2011) and Peeta and Ziliaskopoulos (2001) for a general description of DTA.

Traffic microsimulation has the potential to accurately capture real-world demand and supply phenomena that are
inherently stochastic and heterogeneous. However theoretical DTA developments and their software implementations
have long focused on mesoscopic network loading, primarily motivated by the perceived computational inefficien-
cies of traffic microsimulation as a network loading method within a DTA. While this argument was perhaps valid
during the early phase of DTA research, current hardware and software technologies allow much faster microscopic
loadings and hence render a microscopic DTA both feasible and practical. Mesoscopic loading, which attempts to
approximate microscopic link performance phenomena through macroscopic relationships like the fundamental dia-
gram (e.g. speed-density functions), represents a trade-off between modeling accuracy and running time that is neither
well-studied nor quantified. It could be argued that calibrating a mesoscopic model is no easier than calibrating a mi-
croscopic model, especially since the approximations within the mesoscopic model may introduce inconsistencies as
well as result in biased model parameter estimates. Moreover, the identification of time-varying origin-destination de-
mand generally dominates the calibration problem, and is a challenge common to both microscopic and mesoscopic
loading methods. It should also be noted that even a one-shot microsimulation relies on well-calibrated congested
travel time estimates for all network links, which must generally be obtained from a DTA. Consistency necessitates
that the calibration of a microsimulation tool be performed with a microscopic DTA. When the microscopic fidelity
is thus required for a specific application, such as traffic signal optimization, traffic operations planning or managed
lanes performance evaluation, microscopic DTA is the logical answer.

In this paper, we aim to show that microscopic DTA is feasible on very large datasets. We provide evidence from
four large-scale networks from various regions of the US, many of which continue to be in use today as actively-
maintained traffic operations/management tools. The rest of this paper is organized as follows: Section 2 outlines
our study methodology in broad terms. Section 3 describes the four datasets on which the methodology was applied.
Section 4 is a synthesis of salient numerical results from the four cases. Section 5 concludes the paper with general
observations and potential next steps.

2. Study methodology

This study employs a DTA based on microscopic network loading principles. The DTA framework (Figure 1)
solves for network travel times iteratively: drivers make route and mode choice decisions based on perceived con-
gestion patterns. They then make their trips and experience the outcome of their choices. A learning model updates
their perceptions from day to day as new routing options are explored and congestion patterns evolve collectively.
The iterations continue in search of a stable Wardrop condition in the dynamic context: drivers in a given departure
time interval cannot improve their travel times by switching to another route. Convergence is measured through the
relative gap statistic computed and tracked for each departure time interval. The simulation-based network loading in
each iteration is microscopic, fully capturing the dynamics and fidelity of real-world phenomena on both the demand
and supply sides.

The DTA tool chosen for our tests is TransModeler (Caliper (2015)), which provides a platform for dynamic net-
work loadings at the microscopic, mesoscopic and hybrid levels. Hybrid simulation offers the flexibility to model
some network links under a mesoscopic regime while others may be microscopic, thus expanding the scope of simu-
lation models to the regional scale. TransModeler features a native Geographic Information System (GIS) that models
transportation networks in four dimensions: three spatial and one temporal. TransModeler also explicitly models the
most complex traffic control systems and Intelligent Transportation System (ITS) infrastructure, along with the inter-
action of drivers to the same. TransModeler’s detailed microscopic DTA has also been demonstrated on several large
networks around the country.

The learning model in TransModeler follows a travel time averaging scheme:

Xiv1 = (1 —a)X; + a;i f(X)) (D

where X; represents the travel times input to iteration i; X;, are the output travel times from iteration i (and hence
the input travel times to iteration i + 1); f(e) is the simulation model; and «; is an averaging weight. The choice of
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Fig. 1: Simulation-based DTA framework

a; determines the nature of the learning model. TransModeler provides three options: method of successive averages
(MSA), Polyak averaging and fixed-factor averaging.
The general study methodology follows the steps below:

—

Review the available demand data and assess its quality from the DTA perspective.

2. Collect available time-varying traffic data to support model calibration and validation.

3. Assemble a highly detailed network representation including accurate geography at the lane and intersection
levels, consistent with the ground truth contained in aerial photographs and other data sources.

4. Prepare a complete input dataset and perform a one-shot traffic simulation to trouble-shoot network issues and
assess initial model fit to observed data.

5. Calibrate the model on both the demand and supply sides to best fit the available data. This step may involve
origin-destination (OD) trip table estimation on the demand side, and DTA on the supply side.

6. Validate the model with other data (when available) not used for calibration.

DTA model development in practice typically begins with a traditional (i.e. static) travel demand model. A sub-
area analysis will then be run to crop out the geography of interest along with a consistent set of trip tables for the
sub-area. This set of static trip tables will then be adjusted to change both its scale and structure so as to better match
traffic (count) data collected at a much finer temporal resolution (say 15 minutes or hourly). We refer to this step
as demand calibration. Each OD adjustment step is followed by a DTA step to update the link travel times to better
reflect the new demand pattern. We denote this step as supply calibration.

It should be noted that demand and supply calibration are not independent of each other: one is always performed
conditional on the parameters in the other. For instance, OD matrix estimation (ODME) adjusts demand levels and
demand patterns to match observed traffic patterns, while fixing the parameters of the car-following,lane-changing
and traffic control models that help determine network capacities. Model calibration itself is thus iterative (Figure 2),
moving between ODME and DTA until reasonable consistency is achieved. A thorough review of the DTA model
calibration problem, its structure, challenges and solution is presented in Balakrishna (2006).

Calibrated models must ideally be validated against data that were not part of the calibration step. The most
common approach is to use a hold-out sample so that only a part of the available data are used for calibration.
The remaining data are used to test if the calibrated models can predict well, a crucial test to minimize over-fitting.
Alternatively, data of one type (say traffic counts) may be used for calibration while data from a different source
(such as traffic speeds or travel times) may form the basis for model validation. Model calibration and validation
involve numerous technical challenges, some being more familiar than others in practice. Prior work (see for example
Antoniou et al. (2011) and Toledo and Koutsopoulos (2004)) throws light on several crucial issues that must be
considered and addressed during this stage of model development.
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Fig. 2: Iterative demand-supply calibration

3. Description of datasets

We illustrate our approach through real-world projects that are necessarily large-scale and complex with modeling
requirements that cannot be met by other approaches such as mesoscopic and macroscopic simulation. We present
results from an array of networks covering different roadway structures, spatial demand aggregation levels and project
objectives. Datasets are drawn from various parts of the US:

e Phoenix, Arizona

e Jacksonville, Florida

e Whatcom County, Washington
e Lake County, California

The Phoenix, Arizona model was developed for Maricopa Association of Governments, the Metropolitan Planning
Organization (MPO) for the Greater Phoenix region. The network (Figure 3) was derived from the regional travel
demand model via a sub-area analysis that yielded static OD matrices for an area of about 525 square miles. The
network was augmented to include access to all major demand centers through an extensive coverage of driveways
and cross-streets, represented by 17,333 nodes and 23,358 links. A total of 2,164 intersections feature traffic control
ranging from pre-timed and actuated signals to ramp meters and stop signs. The static OD matrices were used as
initial seeds to the ODME problem, which generated dynamic demand tables for DTA analysis.

The Jacksonville, Florida test involved the direct simulation of disaggregate trips output by an Activity-Based
Model (ABM). Unlike traditional trip-based models, ABMs predict the movement of individual persons between
various daily activities. ABMs can potentially capture the chaining of trips into tours, as well as model interactions
among members of a household. Our Jacksonville test used trip outputs obtained exogenously from the DAYSIM
ABM, which originate and terminate at one of 492,684 parcels spread across six counties. The geographic extent of
the networkand a sample of parcel locations is shown in Figure 4. External and truck trips are modeled on a system
of 2,578 zones. The network is comprised of 73,260 nodes and 177,735 links. The AM peak period (5:00-9:00 AM)
generated roughly 650,000 trips.

The Whatcom County model was developed for the Whatcom Council of Governments in Washington. Its spatial
extent covers nearly 800 square miles covered by a mix of freeways and dense arterial streets (Figure 5). The network
consists of 2,944 nodes and 3,798 links. 603 of the intersections featured traffic control systems, including numerous
roundabouts.

The Lake County, California network (Figure 6) covers about 450 square miles and was represented by 3,300 nodes
and 4,200 links. The detailed network covered 720 miles of roadway, of which 120 miles are on state routes. Three-
hour AM and PM peaks were calibrated to capture the demand for auto and long-distance truck traffic in the region.
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Fig. 4: Jacksonville, Florida

The available data included OD surveys, GPS travel time traces, directional vehicle counts and turning movement
counts.

4. Results

All the case studies generally validate the enhanced modeling fidelity and scalability of the microscopic DTA
framework. In addition, each example highlights specific modeling capabilities unique to that project. This section
provides evidence of the levels of calibration achieved in each case.

The Phoenix model was calibrated against time-varying traffic counts. The calibrated model replicated the hourly
link volumes with a maximum error of 15% across both the AM and PM peak periods on the freeways. The model
was further validated against Inrix speed measurements. The fit between modeled and Inrix speeds is seen in Figure 7.
It should be noted that matching speed or travel time observations is a much harder problem than matching only count
data. It is now well-known that multiple OD solutions can result in the same (or similar) fit to traffic counts, while
only a subset of these OD solutions may yield a realistic match on congestion patterns. The accurate fit to speed data
therefore significantly enhances the quality of the model and the modeler’s confidence in its outputs.
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The calibrated Phoenix model is being used in practice in a wide range of projects, and serves as a region-wide
inventory of the latest signal timing plans,roadway modifications, and ITS infrastructure.

The Jacksonville model was calibrated against traffic counts provided by time period (AM peak, mid-day and PM
peak). Figure 8 shows the fit to the observed counts during the AM and PM peak periods, across all locations for
which count data were available. Figure 9 shows the ability to capture the high volumes on the freeways.

The Jacksonville case illustrates the simulation of disaggregate demand generated from an ABM, and represents
the state of the art of integrating ABMs with traffic microsimulation (other integration efforts have largely relied on
mesoscopic traffic models).

The Whatcom County model (developed for Whatcom Council of Governments) was calibrated to match a range
of traffic and turning movement counts. The fit to the available hourly counts is summarized in Figures 10 and 11.
A sub-area of the calibrated model was used to analyze several road diet scenarios targeting safety improvements to
Alabama Street, a busy urban arterial in the region. These scenarios evaluated various options including the conversion
of travel lanes to bicycle lanes, reduction in lane width, and signal timing plan re-configuration.
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Fig. 6: Lake County network
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Fig. 8: Jacksonville: fit to counts (all links)

The Lake County model was built to study the route choices of heavy vehicles and their impacts on the neigh-
borhoods adjacent to the main freeways in the region. GPS travel time data were available to validate the model’s
predictions. Figure 12 illustrates the calibrated microscopic DTA’s ability to replicate point-to-point travel time obser-
vations. In addition, a bootstrap procedure was adopted to estimate the variance of the model’s travel time estimates
and compare the same against the GPS data. The bootstrap is a statistical methodology to approximate a quantity’s
distribution through a random sampling of the quantity of interest with replacement. The technique allows the mod-
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Fig. 11: Whatcom County: fit to counts (4:00-6:00 PM)

eler to estimate the mean and variance of the measure of interest from a limited number of model runs.Table 13
summarizes the range of model outputs for each major travel segment, and its corresponding observed value.

5. Conclusion

The objective of this paper is to illustrate the concept of dynamic traffic assignment based on microscopic net-
work loading. This approach marries the high fidelity of traffic microsimulation with the advantages of time-varying
network performance estimation available in DTA, and forms the most logical modeling platform for several plan-
ning and operations applications such as workzone scheduling, traffic signal optimization, emissions modeling and
managed lanes evaluation. We present the broad principles involved in microscopic DTA, and provide strong sup-
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Fig. 13: Comparison of bootstrap estimates against GPS data for Lake County

porting evidence from four very large networks. The numerical results prove that microscopic DTA is both feasible
and practical, running in reasonable time on desktop hardware that is affordable and readily available. These results
have a strong bearing on the state of the practice, as modelers and planners now have a tool that does not compromise
modeling accuracy based on running time constraints.

It is nevertheless important to continue demonstrations of microscopic DTA on even larger networks and in a wider
range of applications. In the ABM context, a logical next step is to feed the microscopic DTA travel times back to
assess its impacts on tour formation and scheduling. The ABM’s sensitivity to dynamic skims (as opposed to static
skims) should be of relevance to both theory and practice. A second problem of interest is the study of convergence
behavior in such a feedback system.
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