Development and Application of a Traffic Simulation and Dynamic Traffic Assignment Model Framework for Central Phoenix

Caliper

Purpose

- Add analysis of operations and traffic simulation modeling to the set of services MAG offers to its member agencies
- Build a model to complement MAG's regional travel demand model that:
 - Has the operational sensitivity to capture effects of signal operations, ITS projects
 - Is able to capture the **mobility benefits** of major projects whose impacts will be felt throughout Central Phoenix
 - Accurately portrays the traffic impacts of transit improvements, namely on highcapacity transit corridors
 - Provides a calibrated base model from which smaller, more focused studies can be derived

Approach

- Study Design Stage
 - Solicit stakeholder input/support
 - Scope the model framework, design parameters, and geographic scope
- Model Data Preparation
 - Assemble traffic count and signal timing data
 - Develop simulation model network and relationship to travel demand moel
- Framework Development and Testing
 - Test, calibrate, and validate the model
- Training

Design

- A model congruous with the regional travel demand model
 - Objective: To achieve a degree of integration with the regional travel demand model such that they can share key model data seamlessly
 - *Solution*: A simulation model in TransModeler capable of reading all file formats and data structures of the regional model in TransCAD and sharing a common zonal system (and, hence, ready exchange of origin-destination matrices)
- A multi-resolution traffic simulation model
 - Objective: A simulation model with an appropriate balance of high-fidelity treatment of traffic flow phenomena and practical computational performance
 - Solution: A microsimulation model enabling selective application of lowerresolution (e.g., meso) and multi-resolution (e.g., hybrid micro-meso) models

- Preparation of highly detailed lane-level geography/geometry
- 2. Import of centroids and connectors from regional model
- 3. Auto-adjustment of TAZ connectivity
- 4. Manual addition of centroids along study area boundary

- Preparation of highly detailed lane-level geography/geometry
- 2. Import of centroids and connectors from regional model
- 3. Auto-adjustment of TAZ connectivity
- 4. Manual addition of centroids along study area boundary

- Preparation of highly detailed lane-level geography/geometry
- 2. Import of centroids and connectors from regional model
- 3. Auto-adjustment of TAZ connectivity
- 4. Manual addition of centroids along study area boundary

- Preparation of highly detailed lane-level geography/geometry
- 2. Import of centroids and connectors from regional model
- 3. Auto-adjustment of TAZ connectivity
- 4. Manual addition of centroids along study area boundary

- Preparation of highly detailed lane-level geography/geometry
- 2. Import of centroids and connectors from regional model
- 3. Auto-adjustment of TAZ connectivity
- 4. Manual addition of centroids along study area boundary

- Preparation of highly detailed lane-level geography/geometry
- 2. Import of centroids and connectors from regional model
- 3. Auto-adjustment of TAZ connectivity
- 4. Manual addition of centroids along study area boundary

Visual Audit

 Do route choices comport with expectations, local knowledge?

Caliper

Visual Audit

 Do route choices comport with expectations, local knowledge?

Query paths traversing critical link, turning movement, or arbitrary link sequence

Visual Audit

 Do route choices comport with expectations, local knowledge?

Query paths traversing critical link, turning movement, or arbitrary link sequence

Goodness of Fit

• How well do simulated volumes match the field data? In %RMSE:

AM Period	All Counts	Freeway and Ramp	PM Period	All Counts	Freeway and Ramp
Observations	1,497	279	Observations	1,497	279
6:00 – 7:00 AM	37.8%	20.4%	3:00 – 4:00 PM	31.9%	17.7%
7:00 – 8:00 AM	31.9%	18.0%	4:00 – 5:00 PM	29.6%	18.7%
8:00 – 9:00 AM	30.7%	18.0%	5:00 – 6:00 PM	34.4%	21.0%
6:00 – 9:00 AM	29.25%	15.7%	3:00 – 6:00 PM	28.8%	16.7%

Applications

- US-60/Grand Avenue COMPASS Study
- Old Town Peoria Traffic Study
- Various analyses of traffic interchange redesigns and other roadway improvements

